Laplace Transform

预备知识

Laplace Transform

定义

基本性质

ODE 求解

20250518144616

Example 1

  1. 方程为

    $$ y'(t) = y(t). $$
  2. 进行拉普拉斯变换:

    $$ \underbrace{\mathcal{L}[y']}_{sY(s) - y(0)} = \underbrace{\mathcal{L}[y]}_{Y(s)} $$

    $$ (s - 1) Y = y_0 \Rightarrow Y(s) = \frac{y_0}{s - 1}. $$
  3. 查表可知:

    $$ \mathcal{L}[e^{at}] = \frac{1}{s - a}, $$$$ \mathcal{L}^{-1}[\frac{y_0}{s - 1}] =y_0 \mathcal{L}^{-1}[\frac{1}{s - 1}] =y_0 e^t. $$

Example 2

  1. 方程为

    $$ y'' - 2 y' + y = 0, \quad Y(0) = y_0 = 1, Y'(0) = y_0' = 0. $$
  2. 进行拉普拉斯变换:

    $$ \underbrace{\mathcal{L}[y'']}_{s^2 Y(s) - s y(0) - y'(0)} - 2 \underbrace{\mathcal{L}[y']}_{sY(s) - y(0)} + \underbrace{\mathcal{L}[y]}_{Y(s)} = 0. $$

    $$ (s^2 - 2s + 1) Y - (s + 2)y_0 - y_0' = 0 \Rightarrow Y(s) = \frac{s + 2}{s^2 - 2s + 1} = \frac{s + 2}{(s - 1)^2}. $$
  3. 分解为容易求逆的形式:

    $$ Y(s) = \frac{s - 2}{(s - 1)^2} = \frac{1}{s - 1} - \frac{1}{(s - 1)^2}. $$

    注意到,

    $$ \frac{ \mathrm{d} }{\mathrm{d}s} \left(\frac{1}{s - 1}\right) = -\frac{1}{(s - 1)^2}. $$

    根据 $F^{(1)}(s) = \mathcal{L}[-t f(t)]$ 以及 $\mathcal{L}^{-1}[1 / (s - 1)] = e^{t}$ 可得

    $$ \mathcal{L}^{-1}[-1 / (s - 1)^2] = -te^t. $$

    因此方程的解为

    $$ y(t) = (1 - t)e^t. $$

Example 3

  1. 方程为

    $$ y'' + y = \sin \omega t, \quad y(0) = y_0 = 0, y'(0) = y_0' = 1, \quad \omega \not= \pm 1. $$
  2. 进行拉普拉斯变换:

    $$ \underbrace{\mathcal{L}[y'']}_{s^2 Y(s) - sy(0) - y'(0)} +\underbrace{\mathcal{L}[y]}_{Y(s)} =\underbrace{\mathcal{L}[\sin \omega t]}_{\frac{\omega}{s^2 + \omega^2}}. $$

    $$ (s^2 + 1) Y - sy_0 - y_0' = \frac{\omega}{s^2 + \omega^2}. \Rightarrow Y = \frac{1}{s^2 + 1} + \frac{\omega}{(s^2 + 1)(s^2 + \omega^2)}. $$
  3. 分解为容易求逆的形式:

    $$ Y = \frac{1}{s^2 + 1} + \frac{\omega}{\omega^2 - 1} \left ( \frac{1}{s^2 + 1} - \frac{1}{s^2 + \omega^2} \right ). $$

    查表可得

    $$ \mathcal{L}[\sin \omega t] = \frac{\omega}{s^2 + \omega^2}, $$

    因此

    $$ y(t) = \frac{\omega^2 + \omega - 1}{\omega^2 - 1} \sin t - \frac{1}{\omega^2 - 1} \sin \omega t. $$

有趣的拓展: Transfer Function

常见的 Laplace 变换

20250518163710

20250518163727

参考文献

  1. Wong J. Math 353 Lecture Notes Laplace Transform: Fundamentals. [PDF] [Code]